2009-2010 Winter Canola Performance Trials

Production season

The 2009-2010 canola production season in Oklahoma was good to excellent in most areas of the state. The southwestern part of the state dealt with pest pressure, but—for the most part—pest pressure was average to below average for the state. In most parts of the state, adequate moisture was received to produce above average yields.

The 2009-2010 winter was the coldest winter in recent history, and very little winter kill was observed when the planting date was within the recommended time frame. As long as the planting date recommendations are followed, winter kill appears to not be a problem for most areas in Oklahoma when using recommended varieties/hybrids for Oklahoma. During the growing season, we expanded our knowledge of growing winter canola and identifying varieties that have the greatest potential for Oklahoma. Canola remains a highly viable crop for most areas of Oklahoma.

Pest problems

Overall, pest problems were average in 2009-2010. Aphid pressure varied from region to region as usual. In the southwestern part of the state, aphid control was challenging and many fields were sprayed twice. The further north you went, fewer applications of pesticides were necessary.

Interpreting data

Details of establishment and management of each test are listed in footnotes below the tables. Least significant differences (LSD) are listed at the bottom of all but the Performance Summary tables. Differences among varieties are significant only if they are equal to or greater than the LSD value. If a given variety out yields another variety by as much or more than the LSD value, then we are 95 percent sure that the yield difference is real, with only a 5 percent probability that the difference is due to chance alone. For example, if variety X is 500 lbs/acre higher in yield than variety Y, then this difference is statistically significant if the LSD is 500 or less. If the LSD is 501 or greater, then we are less confident that variety X really is higher yielding than variety Y under the conditions of the test.

The coefficient of variation (CV value) listed at the bottom of each table is used as a measure of the precision of the experiment. Lower CV values will generally relate to lower experimental error in the trial. Uncontrollable or immeasurable variations in soil fertility, soil drainage and other environmental factors contribute to greater experimental error and higher CV values. Generally, a CV less than 15 for canola trials is considered good. This is an indication that less error was observed in the plots.

Results reported here should be representative of what might occur throughout the state but would be most applicable under environmental and management conditions similar to those of the tests. The relative yields of all canola cultivars are affected by crop management and by environmental factors including soil type, winter conditions, soil moisture conditions, diseases and insects.

Methods

Oklahoma test locations were near Frederick, Fort Cobb, Dacoma, Lahoma, Lamont and Hennessey. The location at Dacoma was lost due to environmental conditions.

Plots were 4 feet wide by 20 feet long and seeded at a rate of 5 lbs/acre. Soil characteristics and fertilizer applied is indicated for each location on later pages. Plots were kept pest free for the duration of the growing season. Entire plots were swathed and harvested with a small plot combine.

Additional information on the Web

A copy of this publication, additional variety information and more information on canola management can be found at: www.canola.okstate.edu/
<table>
<thead>
<tr>
<th>Name/Address</th>
<th>Contact</th>
<th>Entries</th>
<th>Roundup Ready</th>
<th>Hybrid/OP†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekalb/Monsanto</td>
<td>620-825-4315</td>
<td>DKW 46-15</td>
<td>Yes</td>
<td>OP</td>
</tr>
<tr>
<td>540 Dickinson St</td>
<td></td>
<td>DKW 41-10</td>
<td>Yes</td>
<td>OP</td>
</tr>
<tr>
<td>P.O.Box 47</td>
<td></td>
<td>DKW 47-15</td>
<td>Yes</td>
<td>OP</td>
</tr>
<tr>
<td>Kiowa, KS 67070</td>
<td></td>
<td>DKW 44-10</td>
<td>Yes</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CWH 633</td>
<td>Yes</td>
<td>OP</td>
</tr>
<tr>
<td>DL Seeds</td>
<td>204-331-2360</td>
<td>Baldur</td>
<td>No</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Box 2499</td>
<td></td>
<td>Sitro</td>
<td>No</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Mordien, MB Canada</td>
<td></td>
<td>Visby</td>
<td>No</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Kansas State Univ./</td>
<td>785-532-3871</td>
<td>Wichita</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td>Oklahoma State Univ.</td>
<td></td>
<td>Sumner</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td>2004 Throckmorton Plant</td>
<td></td>
<td>KS 3132</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td>Sciences Center</td>
<td></td>
<td>KS 3254</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td>Manhattan, KS 66506</td>
<td></td>
<td>KS 4031</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KS 4158</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KS 4313</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KS 4426</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KS 4475</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9135 (Kiowa)</td>
<td>No</td>
<td>OP</td>
</tr>
<tr>
<td>Cropland Genetics</td>
<td>701-852-3556</td>
<td>Hyclass 110W</td>
<td>Yes</td>
<td>OP</td>
</tr>
<tr>
<td>525 55th St. SE</td>
<td></td>
<td>Hyclass 115 W</td>
<td>Yes</td>
<td>OP</td>
</tr>
<tr>
<td>Minot, ND 58701</td>
<td></td>
<td>Hyclass 154W</td>
<td>Yes</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Technology Crops Int.</td>
<td>336-354-1144</td>
<td>Ropssini (High Erucic Acid)</td>
<td>No</td>
<td>Hybrid</td>
</tr>
</tbody>
</table>

† Indicates if the entry is a hybrid or open pollinated variety.
Observations:

This location was new to the trial in 2009-2010. In the past, the location was located near Altus. This location better suited the soil types in which canola was being grown in the area. The location had ideal soil moisture at planting. An ideal stand was achieved, but throughout the winter the soil remained waterlogged, which caused a reduction in stands and plant vigor in the late-winter period. Aphid pressure also was high at this location, resulting in two pesticide applications. Aphid damage was observed in the plots and estimated to be 5 percent to 10 percent, but it was uniform across the plots. Seed yields averaged 1,223 lbs/acre when averaged across all varieties/hybrids.

Table 2. Information on soil properties and management practices for Frederick, Okla. in 2009-2010.

<table>
<thead>
<tr>
<th>Date Planted</th>
<th>30-Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Moisture at Planting</td>
<td>Good</td>
</tr>
<tr>
<td>Soil Chemical Characteristics</td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td>8</td>
</tr>
<tr>
<td>Soil Test P Index</td>
<td>31</td>
</tr>
<tr>
<td>Soil Test K Index</td>
<td>806</td>
</tr>
<tr>
<td>Nitrate-N (lbs N/acre)</td>
<td>-</td>
</tr>
<tr>
<td>Sulfur (lbs/acre)</td>
<td>-</td>
</tr>
<tr>
<td>Fall Stand Counts Taken</td>
<td>10-Dec</td>
</tr>
<tr>
<td>Winter Survival Ratings</td>
<td>-</td>
</tr>
<tr>
<td>Swathed</td>
<td>28-May</td>
</tr>
<tr>
<td>Harvested</td>
<td>2-Jun</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertilizer Applied (lbs/acre)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Nitrogen</td>
<td>30</td>
</tr>
<tr>
<td>Spring Nitrogen</td>
<td>100</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>130</td>
</tr>
<tr>
<td>(\text{P}_2\text{O}_5)</td>
<td>0</td>
</tr>
<tr>
<td>(\text{K}_2\text{O})</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insecticide Applied</th>
<th>two times</th>
</tr>
</thead>
</table>

Frederick Temperature

Frederick Precipitation

Month of Growing Season
<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fall Stand Rating†</th>
<th>Winter Survival‡</th>
<th>Maturity at Swathing§</th>
<th>Height</th>
<th>Seed Yield 2009-2010</th>
<th>2-yr Average Seed Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rossini¶</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DWK 44-10 ††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sitro</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HYCLASS 115W††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DKW 47-15††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KS4158</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KS4426</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DKW 46-15††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KIOWA</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Baldur</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KS3254</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KS4031</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HYCLASS 110W††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KS3132</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WICHITA</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HYCLASS 154W††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SUMNER</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CWH 633††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KS4475</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KS4313</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DKW 41-10††</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Visby</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LSD (P=0.05)</td>
<td>0.9</td>
<td>536</td>
<td>405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>32</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Fall stand rating was based on a 0 to 10 scale with 10 being a full stand.
‡ Winter survival ratings were not taken in the spring after winter dormancy was broken.
§ Maturity ratings were determined at swathing by visually estimating the percentage of the seed in pods that had turned black.
¶ High erucic acid rapeseed, can only be used for industrial purposes.
†† Roundup ready canola.
Observations:
The Fort Cobb location was planted during the optimum planting dates for the area (Sept. 20 to Oct. 1). The location was at the Caddo Research Station on a sandy loam soil. Stresses were minimal at the location throughout the entire growing season, as indicated by the outstanding yields. Seed yields at Fort Cobb averaged 3,297 lbs/acre when averaged across all varieties/hybrids.

Table 4. Information on soil properties and management practices for Fort Cobb, Okla. in 2009-2010.

<table>
<thead>
<tr>
<th>Date Planted</th>
<th>30-Sep</th>
<th>Soil Moisture at Planting</th>
<th>Good</th>
<th>Fertilizer Applied (lbs/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Planted</td>
<td>30-Sep</td>
<td>Soil Moisture at Planting</td>
<td>Good</td>
<td>Fertilizer Applied (lbs/acre)</td>
</tr>
<tr>
<td>Soil Chemical Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td>7.1</td>
<td>Fall Nitrogen</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Soil Test P Index</td>
<td>56</td>
<td>Spring Nitrogen</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Soil Test K Index</td>
<td>426</td>
<td>Total Nitrogen</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Nitrate-N (lbs N/acre)</td>
<td>15</td>
<td>P₂O₅</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Sulfur (lbs/acre)</td>
<td>18</td>
<td>K₂O</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfur</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Fall Stand Counts Taken</td>
<td>20-Nov</td>
<td>Insecticide Applied</td>
<td>two times</td>
<td></td>
</tr>
<tr>
<td>Winter Survival Ratings</td>
<td>1-Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swathed</td>
<td>28-May</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvested</td>
<td>2-Jun</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Selected cultivar characteristics and seed yields at Fort Cobb, Okla. in 2009-2010 and a 2-year average.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fall Stand Rating†</th>
<th>Winter Survival‡</th>
<th>Maturity at Swathing§</th>
<th>Height</th>
<th>Seed Yield 2009-2010</th>
<th>2-yr Average Seed Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rossini¶</td>
<td>10</td>
<td>100</td>
<td>3.3</td>
<td>38</td>
<td>3,884</td>
<td>3,519</td>
</tr>
<tr>
<td>Visby</td>
<td>10</td>
<td>100</td>
<td>3.3</td>
<td>40</td>
<td>3,711</td>
<td>2,931</td>
</tr>
<tr>
<td>WICHITA</td>
<td>10</td>
<td>100</td>
<td>3.5</td>
<td>39</td>
<td>3,637</td>
<td>2,540</td>
</tr>
<tr>
<td>Sitro</td>
<td>10</td>
<td>100</td>
<td>3.8</td>
<td>41</td>
<td>3,614</td>
<td>2,932</td>
</tr>
<tr>
<td>Baldur</td>
<td>10</td>
<td>100</td>
<td>4.0</td>
<td>44</td>
<td>3,570</td>
<td>-</td>
</tr>
<tr>
<td>DWK 44-10 ††</td>
<td>10</td>
<td>100</td>
<td>3.5</td>
<td>40</td>
<td>3,524</td>
<td>-</td>
</tr>
<tr>
<td>HYCLASS 115W††</td>
<td>10</td>
<td>100</td>
<td>3.5</td>
<td>39</td>
<td>3,448</td>
<td>-</td>
</tr>
<tr>
<td>SUMNER</td>
<td>10</td>
<td>100</td>
<td>3.0</td>
<td>38</td>
<td>3,429</td>
<td>2,476</td>
</tr>
<tr>
<td>DWK 46-15††</td>
<td>10</td>
<td>100</td>
<td>2.5</td>
<td>38</td>
<td>3,410</td>
<td>2,894</td>
</tr>
<tr>
<td>KS4426</td>
<td>10</td>
<td>100</td>
<td>4.3</td>
<td>41</td>
<td>3,350</td>
<td>-</td>
</tr>
<tr>
<td>KIOWA</td>
<td>10</td>
<td>100</td>
<td>3.8</td>
<td>40</td>
<td>3,348</td>
<td>-</td>
</tr>
<tr>
<td>KS4475</td>
<td>10</td>
<td>100</td>
<td>3.8</td>
<td>39</td>
<td>3,339</td>
<td>-</td>
</tr>
<tr>
<td>HYCLASS 110W††</td>
<td>10</td>
<td>100</td>
<td>3.3</td>
<td>39</td>
<td>3,228</td>
<td>-</td>
</tr>
<tr>
<td>DKW 47-15††</td>
<td>10</td>
<td>100</td>
<td>3.8</td>
<td>41</td>
<td>3,131</td>
<td>2,747</td>
</tr>
<tr>
<td>KS3254</td>
<td>10</td>
<td>100</td>
<td>3.8</td>
<td>41</td>
<td>3,117</td>
<td>-</td>
</tr>
<tr>
<td>KS3132</td>
<td>10</td>
<td>100</td>
<td>3.3</td>
<td>38</td>
<td>3,111</td>
<td>-</td>
</tr>
<tr>
<td>CWH 633††</td>
<td>10</td>
<td>100</td>
<td>3.8</td>
<td>41</td>
<td>3,060</td>
<td>2,669</td>
</tr>
<tr>
<td>KS4313</td>
<td>10</td>
<td>100</td>
<td>4.5</td>
<td>43</td>
<td>3,026</td>
<td>-</td>
</tr>
<tr>
<td>KS4158</td>
<td>10</td>
<td>100</td>
<td>3.3</td>
<td>38</td>
<td>3,022</td>
<td>-</td>
</tr>
<tr>
<td>KS4031</td>
<td>10</td>
<td>100</td>
<td>4.0</td>
<td>42</td>
<td>2,991</td>
<td>-</td>
</tr>
<tr>
<td>HYCLASS 154W††</td>
<td>10</td>
<td>100</td>
<td>4.3</td>
<td>41</td>
<td>2,911</td>
<td>2,916</td>
</tr>
<tr>
<td>DKW 41-10††</td>
<td>10</td>
<td>100</td>
<td>2.8</td>
<td>35</td>
<td>2,671</td>
<td>2,217</td>
</tr>
</tbody>
</table>

LSD (P=0.05)
CV

† Fall stand rating was based on a 0 to 10 scale with 10 being a full stand.
‡ Winter survival ratings were taken in the spring after winter dormancy was broken (rated as percent of the plot that survived).
§ Maturity ratings were determined at swathing by visually estimating the percentage of the seed in pods that had turned black.
¶ High erucic acid rapeseed, can only be used for industrial purposes.
†† Roundup ready canola.
Hennessey, Okla.

Observations:
Excellent seedbed moisture was present at planting, and the canola got off to a quick start. Seed yields were excellent at Hennessey with an average of 3,423 lbs/acre when averaged across all varieties/hybrids. Plants were affected very little from an early spring freeze that occurred just at the onset of blooming. Some winter kill was observed in the plots, the majority of winter kill can be blamed to excessive fall growth. No insecticide applications were made.

Table 6. Information on soil properties and management practices for Hennessey, Okla. in 2009-2010.

| Date Planted | 21-Sep |
| Soil Moisture at Planting | Excellent |
| Soil Chemical Characteristics |
Soil pH	na
Soil Test P Index	na
Soil Test K Index	na
Nitrate-N (lbs N/acre)	na
Sulfur (lbs/acre)	na
Fertilizer Applied (lbs/acre)	
Fall Nitrogen	30
Spring Nitrogen	100
Total Nitrogen	130
\(\text{P}_2\text{O}_5 \)	0
\(\text{K}_2\text{O} \)	0
Sulfur	10
Fall Stand Counts Taken	20-Nov
Winter Survival Ratings	1-Mar
Swathed	2-Jun
Harvested	8-Jun
Insecticide Applied	none
Table 7. Selected cultivar characteristics and seed yields at Hennessey, Okla. in 2009-2010.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fall Stand Rating†</th>
<th>Winter Survival‡</th>
<th>Maturity at Swathing§</th>
<th>Height</th>
<th>Seed Yield 2009-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWK 44-10 ††</td>
<td>10</td>
<td>95</td>
<td>2.5</td>
<td>41</td>
<td>4,390</td>
</tr>
<tr>
<td>KS3254</td>
<td>10</td>
<td>87</td>
<td>3.5</td>
<td>46</td>
<td>3,910</td>
</tr>
<tr>
<td>KS4158</td>
<td>10</td>
<td>88</td>
<td>3.5</td>
<td>44</td>
<td>3,845</td>
</tr>
<tr>
<td>Visby</td>
<td>10</td>
<td>88</td>
<td>3.5</td>
<td>41</td>
<td>3,819</td>
</tr>
<tr>
<td>KS4313</td>
<td>10</td>
<td>78</td>
<td>4.0</td>
<td>48</td>
<td>3,805</td>
</tr>
<tr>
<td>HYCLASS 115W††</td>
<td>10</td>
<td>94</td>
<td>2.5</td>
<td>38</td>
<td>3,764</td>
</tr>
<tr>
<td>SUMNER</td>
<td>10</td>
<td>95</td>
<td>3.5</td>
<td>42</td>
<td>3,672</td>
</tr>
<tr>
<td>KS3132</td>
<td>10</td>
<td>94</td>
<td>4.0</td>
<td>42</td>
<td>3,663</td>
</tr>
<tr>
<td>DKW 46-15††</td>
<td>10</td>
<td>90</td>
<td>3.0</td>
<td>43</td>
<td>3,631</td>
</tr>
<tr>
<td>KS4031</td>
<td>10</td>
<td>92</td>
<td>3.5</td>
<td>46</td>
<td>3,623</td>
</tr>
<tr>
<td>WICHITA</td>
<td>10</td>
<td>93</td>
<td>3.0</td>
<td>44</td>
<td>3,586</td>
</tr>
<tr>
<td>KS4475</td>
<td>10</td>
<td>90</td>
<td>3.5</td>
<td>49</td>
<td>3,555</td>
</tr>
<tr>
<td>KS4426</td>
<td>10</td>
<td>94</td>
<td>4.0</td>
<td>45</td>
<td>3,553</td>
</tr>
<tr>
<td>CWH 633††</td>
<td>10</td>
<td>85</td>
<td>3.5</td>
<td>41</td>
<td>3,526</td>
</tr>
<tr>
<td>DKW 41-10††</td>
<td>10</td>
<td>89</td>
<td>1.5</td>
<td>35</td>
<td>3,456</td>
</tr>
<tr>
<td>KIOWA</td>
<td>10</td>
<td>84</td>
<td>3.5</td>
<td>47</td>
<td>3,289</td>
</tr>
<tr>
<td>Baldur</td>
<td>10</td>
<td>92</td>
<td>4.0</td>
<td>44</td>
<td>3,156</td>
</tr>
<tr>
<td>HYCLASS 154W††</td>
<td>10</td>
<td>94</td>
<td>4.5</td>
<td>44</td>
<td>3,017</td>
</tr>
<tr>
<td>HYCLASS 110W††</td>
<td>10</td>
<td>91</td>
<td>3.0</td>
<td>37</td>
<td>2,679</td>
</tr>
<tr>
<td>DKW 47-15††</td>
<td>10</td>
<td>87</td>
<td>3.5</td>
<td>37</td>
<td>2,634</td>
</tr>
<tr>
<td>Sitro</td>
<td>10</td>
<td>88</td>
<td>4.5</td>
<td>39</td>
<td>2,573</td>
</tr>
<tr>
<td>Rossini¶</td>
<td>10</td>
<td>86</td>
<td>3.5</td>
<td>37</td>
<td>2,151</td>
</tr>
</tbody>
</table>

LSD (P=0.05) | 13 | 1 | 4 | 550
CV | 11 | 16 | 4 | 12

† Fall stand rating was based on a 0 to 10 scale with 10 being a full stand.
‡ Winter survival ratings were taken in the spring after winter dormancy was broken (rated as percent of the plot that survived).
§ Maturity ratings were determined at swathing by visually estimating the percentage of the seed in pods that had turned black.
¶ High erucic acid rapeseed, can only be used for industrial purposes.
†† Roundup ready canola.
Observations:

The trial at Lahoma was seeded into a dry seedbed. Some seed was placed into moisture and quickly germinated but the others were placed in dry soil and needed rain to germinate. Plants were three to four leaves going into winter dormancy but the majority of plants survived the winter. Spring stands were sufficient to achieve high yields. Seed yields at Lahoma averaged 2,216 lb/ac when averaged across all varieties/hybrids. No insecticides were needed throughout the growing season.

Table 8. Information on soil properties and management practices for Lahoma, OK in 2009-2010.

<table>
<thead>
<tr>
<th>Date Planted</th>
<th>21-Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Moisture at Planting</td>
<td>Dry</td>
</tr>
<tr>
<td>Soil Chemical Characteristics</td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td>7.8</td>
</tr>
<tr>
<td>Soil Test P Index</td>
<td>22</td>
</tr>
<tr>
<td>Soil Test K Index</td>
<td>408</td>
</tr>
<tr>
<td>Nitrate-N (lbs N/ac)</td>
<td>-</td>
</tr>
<tr>
<td>Sulfur (lbs/ac)</td>
<td>-</td>
</tr>
<tr>
<td>Fertilizer Applied (lbs/ac)</td>
<td></td>
</tr>
<tr>
<td>Fall Nitrogen</td>
<td>30</td>
</tr>
<tr>
<td>Spring Nitrogen</td>
<td>100</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>130</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0</td>
</tr>
<tr>
<td>K₂O</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur</td>
<td>10</td>
</tr>
<tr>
<td>Fall Stand Counts Taken</td>
<td>10-Dec</td>
</tr>
<tr>
<td>Winter Survival Ratings</td>
<td>10-Feb</td>
</tr>
<tr>
<td>Swathed</td>
<td>2-Jun</td>
</tr>
<tr>
<td>Harvested</td>
<td>8-Jun</td>
</tr>
<tr>
<td>Insecticide Applied</td>
<td>none</td>
</tr>
</tbody>
</table>

Lahoma Temperature

Lahoma Precipitation
Table 9. Selected cultivar characteristics and seed yields at Lahoma, Okla. in 2009-2010 and a 2-year average.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fall Stand Rating†</th>
<th>Winter Survival‡</th>
<th>Maturity at Swathing§</th>
<th>Height</th>
<th>Seed Yield 2009-2010</th>
<th>2-yr Average Seed Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>WICHITA</td>
<td>8.0</td>
<td>100</td>
<td>-</td>
<td>37</td>
<td>2,803</td>
<td>2,644</td>
</tr>
<tr>
<td>Visby</td>
<td>8.0</td>
<td>100</td>
<td>-</td>
<td>38</td>
<td>2,689</td>
<td>2,816</td>
</tr>
<tr>
<td>Sitro</td>
<td>7.6</td>
<td>100</td>
<td>na</td>
<td>36</td>
<td>2,634</td>
<td>3,036</td>
</tr>
<tr>
<td>DWK 44-10 ††</td>
<td>8.2</td>
<td>100</td>
<td>-</td>
<td>34</td>
<td>2,604</td>
<td>-</td>
</tr>
<tr>
<td>KS3132</td>
<td>7.4</td>
<td>100</td>
<td>-</td>
<td>41</td>
<td>2,490</td>
<td>-</td>
</tr>
<tr>
<td>Baldur</td>
<td>8.2</td>
<td>100</td>
<td>-</td>
<td>41</td>
<td>2,488</td>
<td>-</td>
</tr>
<tr>
<td>Rossini¶</td>
<td>8.2</td>
<td>100</td>
<td>-</td>
<td>31</td>
<td>2,250</td>
<td>2,767</td>
</tr>
<tr>
<td>CWH 633††</td>
<td>7.6</td>
<td>100</td>
<td>-</td>
<td>38</td>
<td>2,236</td>
<td>2,731</td>
</tr>
<tr>
<td>KIOWA</td>
<td>8.2</td>
<td>100</td>
<td>-</td>
<td>42</td>
<td>2,215</td>
<td>-</td>
</tr>
<tr>
<td>KS3254</td>
<td>7.6</td>
<td>100</td>
<td>-</td>
<td>42</td>
<td>2,212</td>
<td>-</td>
</tr>
<tr>
<td>KS4158</td>
<td>7.8</td>
<td>100</td>
<td>-</td>
<td>40</td>
<td>2,195</td>
<td>-</td>
</tr>
<tr>
<td>KS4475</td>
<td>7.8</td>
<td>100</td>
<td>-</td>
<td>43</td>
<td>2,169</td>
<td>-</td>
</tr>
<tr>
<td>DKW 46-15††</td>
<td>7.2</td>
<td>100</td>
<td>-</td>
<td>37</td>
<td>2,159</td>
<td>2,607</td>
</tr>
<tr>
<td>SUMNER</td>
<td>7.8</td>
<td>100</td>
<td>-</td>
<td>38</td>
<td>2,154</td>
<td>2,374</td>
</tr>
<tr>
<td>HYCLASS 154W††</td>
<td>7.4</td>
<td>100</td>
<td>-</td>
<td>43</td>
<td>2,122</td>
<td>2,932</td>
</tr>
<tr>
<td>DKW 47-15††</td>
<td>7.4</td>
<td>100</td>
<td>-</td>
<td>35</td>
<td>2,090</td>
<td>2,645</td>
</tr>
<tr>
<td>HYCLASS 115W††</td>
<td>8.4</td>
<td>100</td>
<td>-</td>
<td>36</td>
<td>2,072</td>
<td>-</td>
</tr>
<tr>
<td>KS4313</td>
<td>7.6</td>
<td>100</td>
<td>-</td>
<td>42</td>
<td>2,011</td>
<td>-</td>
</tr>
<tr>
<td>KS4031</td>
<td>7.8</td>
<td>100</td>
<td>-</td>
<td>43</td>
<td>1,946</td>
<td>-</td>
</tr>
<tr>
<td>KS4426</td>
<td>7.2</td>
<td>100</td>
<td>-</td>
<td>40</td>
<td>1,871</td>
<td>-</td>
</tr>
<tr>
<td>HYCLASS 110W††</td>
<td>7.0</td>
<td>100</td>
<td>-</td>
<td>33</td>
<td>1,739</td>
<td>-</td>
</tr>
<tr>
<td>DKW 41-10††</td>
<td>6.4</td>
<td>100</td>
<td>-</td>
<td>30</td>
<td>1,591</td>
<td>2,073</td>
</tr>
</tbody>
</table>

LSD (P=0.05) 1.0 427 390
CV 9 13

† Fall stand rating was based on a 0 to 10 scale with 10 being a full stand.
‡ Winter survival ratings were taken in the spring after winter dormancy was broken (rated as percent of the plot that survived).
§ Maturity ratings were determined at swathing by visually estimating the percentage of the seed in pods that had turned black.
¶ High erucic acid rapeseed, can only be used for industrial purposes.
†† Roundup ready canola.
Observations:
Lamont was added as a location in 2009-2010. This location was located on a farmer’s field north of Lamont. This location was no-till that was burned and harrowed prior to planting. Little to no residue was present at planting time. Seed yields at Lamont averaged 2,705 lbs/acre when averaged across all varieties/hybrids. This location was stressed for moisture to a limited degree in April due to below normal rainfall.

Table 10. Information on soil properties and management practices for Lamont, Okla. in 2009-2010.

<table>
<thead>
<tr>
<th>Date Planted</th>
<th>28-Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Moisture at Planting</td>
<td>Excellent</td>
</tr>
<tr>
<td>Soil Chemical Characteristics</td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td>6.1</td>
</tr>
<tr>
<td>Soil Test P Index</td>
<td>50</td>
</tr>
<tr>
<td>Soil Test K Index</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate-N (lbs N/acre)</td>
<td>35</td>
</tr>
<tr>
<td>Sulfur (lbs/acre)</td>
<td>-</td>
</tr>
<tr>
<td>Fall Stand Counts Taken</td>
<td>20-Nov</td>
</tr>
<tr>
<td>Winter Survival Ratings</td>
<td>1-Mar</td>
</tr>
<tr>
<td>Swathed</td>
<td>2-Jun</td>
</tr>
<tr>
<td>Harvested</td>
<td>21-Jun</td>
</tr>
</tbody>
</table>

Fertilizer Applied (lbs/acre)
- Fall Nitrogen 100
- Spring Nitrogen 30
- Total Nitrogen 130
- P₂O₅ 0
- K₂O 0
- Sulfur 20

Insecticide Applied none
Table 11. Selected cultivar characteristics and seed yields at Lamont, Okla. in 2009-2010.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fall Stand Rating†</th>
<th>Winter Survival‡</th>
<th>Swathing§</th>
<th>Height</th>
<th>Seed Yield 2009-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitro</td>
<td>7.8</td>
<td>100</td>
<td>na</td>
<td>37</td>
<td>3,135</td>
</tr>
<tr>
<td>DKW 46-15††</td>
<td>8.6</td>
<td>100</td>
<td>36</td>
<td>2,999</td>
<td></td>
</tr>
<tr>
<td>KS4158</td>
<td>8.8</td>
<td>100</td>
<td>40</td>
<td>2,976</td>
<td></td>
</tr>
<tr>
<td>KS4426</td>
<td>8.3</td>
<td>100</td>
<td>39</td>
<td>2,915</td>
<td></td>
</tr>
<tr>
<td>WICHITA</td>
<td>8.7</td>
<td>100</td>
<td>41</td>
<td>2,858</td>
<td></td>
</tr>
<tr>
<td>SUMNER</td>
<td>8.9</td>
<td>100</td>
<td>39</td>
<td>2,843</td>
<td></td>
</tr>
<tr>
<td>KS3132</td>
<td>9.0</td>
<td>100</td>
<td>39</td>
<td>2,833</td>
<td></td>
</tr>
<tr>
<td>Visby</td>
<td>7.6</td>
<td>100</td>
<td>38</td>
<td>2,801</td>
<td></td>
</tr>
<tr>
<td>Baldur</td>
<td>8.0</td>
<td>100</td>
<td>39</td>
<td>2,791</td>
<td></td>
</tr>
<tr>
<td>KS3254</td>
<td>8.9</td>
<td>100</td>
<td>43</td>
<td>2,786</td>
<td></td>
</tr>
<tr>
<td>KIOWA</td>
<td>8.1</td>
<td>100</td>
<td>44</td>
<td>2,755</td>
<td></td>
</tr>
<tr>
<td>Rossini¶</td>
<td>7.4</td>
<td>100</td>
<td>35</td>
<td>2,754</td>
<td></td>
</tr>
<tr>
<td>DWK 44-10 ††</td>
<td>9.0</td>
<td>100</td>
<td>34</td>
<td>2,727</td>
<td></td>
</tr>
<tr>
<td>KS4031</td>
<td>8.9</td>
<td>100</td>
<td>42</td>
<td>2,720</td>
<td></td>
</tr>
<tr>
<td>KS4475</td>
<td>8.6</td>
<td>100</td>
<td>37</td>
<td>2,701</td>
<td></td>
</tr>
<tr>
<td>KS4313</td>
<td>8.8</td>
<td>100</td>
<td>44</td>
<td>2,655</td>
<td></td>
</tr>
<tr>
<td>CWH 633††</td>
<td>8.4</td>
<td>100</td>
<td>35</td>
<td>2,612</td>
<td></td>
</tr>
<tr>
<td>HYCLASS 115W††</td>
<td>8.8</td>
<td>100</td>
<td>39</td>
<td>2,524</td>
<td></td>
</tr>
<tr>
<td>HYCLASS 154W††</td>
<td>8.1</td>
<td>100</td>
<td>39</td>
<td>2,492</td>
<td></td>
</tr>
<tr>
<td>DKW 47-15††</td>
<td>8.5</td>
<td>100</td>
<td>36</td>
<td>2,279</td>
<td></td>
</tr>
<tr>
<td>DKW 41-10††</td>
<td>8.4</td>
<td>100</td>
<td>33</td>
<td>2,239</td>
<td></td>
</tr>
<tr>
<td>HYCLASS 110W††</td>
<td>7.9</td>
<td>100</td>
<td>31</td>
<td>2,113</td>
<td></td>
</tr>
</tbody>
</table>

LSD (P=0.05) 1.0 385
CV 7 11

† Fall stand rating was based on a 0 to 10 scale with 10 being a full stand.
‡ Winter survival ratings were taken in the spring after winter dormancy was broken (rated as percent of the plot that survived).
§ Maturity ratings were determined at swathing by visually estimating the percentage of the seed in pods that had turned black.
¶ High erucic acid rapeseed, can only be used for industrial purposes.
†† Roundup ready canola.

Table 11. Continued

The authors would like to thank the following individuals for their cooperation in gathering information for this current report:

Cooperating Producers
Craig Johnson, Dacoma, Okla.
Jeff Scott, Lamont, Okla.
Mack Farms, Hennessey, Okla.

Cooperating County Educators
Scott Price, Grant County
Jeff Bedwell, Garfield County
Aaron Henson, Tillman County

Cooperating Station Superintendents
Erich Wehrenberg, Agronomy Research Station, Stillwater, Okla.
Bobby Weidenmaier, Caddo Research Station, Fort Cobb, Okla.
Ray Sidwell, North Central Research Station, Lahoma, Okla.

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, gender, age, religion, disability, or status as a veteran in any of its policies, practices, or procedures. This includes but is not limited to admissions, employment, financial aid, and educational services.